Synthesis and structural characterization of binuclear (η^{6}-benzene) ruthenium(II) complexes with one or two bridging N -donor ligands

W.S. Sheldrick and H.-S. Hagen-Eckhard
Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, W-4630 Bochum 1 (Germany)

(Received December 20th, 1990)

Abstract

Reaction of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ with pyrazole (Hpz) in appropriate molar ratio at room temperature in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}$ yields the products $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{Cl})(\mu-\mathrm{pz})_{2} \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}$ (1a) and [$\left(\eta^{6}-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{Cl})_{2}(\mu-\mathrm{pz}) \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}(2 \mathrm{a})$, the structures of which were established by an X-ray study. Analogous binuclear complexes 3 a and 4 a were prepared with 4 -methylpyrazole (4 MepzH). The facile $\mathrm{Cl}^{-} / \mathrm{OH}^{-}$exchange in these complexes has been studied by ${ }^{1} \mathrm{H}$ NMR spectroscopy at elevated temperatures. The hydroxo-bridged complexes [$\left.\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{OH})(\mu \text {-pz })_{2} \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}$ (1b) and $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{OH})_{2}(\mu-\mathrm{pz}) \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}(2 c)$ were also be prepared directly from $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ and pyrazole by refluxing in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}$ solution. Reaction of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ with 6 -azauracil $\left(6 a u r a H_{2}\right)$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}$ solution at room temperature yields $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{OH})_{2}(\mu-\right.$ 6auraH) $\left.\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}(6)$, the crystal structure of which is reported. A chloro-bridged binuclear complex could not be prepared; the analogous reaction in methanol alone gives $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}\right.$ Cl_{2} (6auraH$)_{2}$] (7).

Introduction

The reactions of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ with pyrazole (Hpz) or 3,5-dimethylpyrazole ($\mathrm{Me}_{2} \mathrm{Hpz}$) in methanol at room temperature have been reported to give the mononuclear cations $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}\left(\mathrm{R}_{2} \mathrm{Hpz}\right)_{2}\right]^{+}(\mathrm{R}=\mathrm{H}, \mathrm{Me})$ [1]. The complex [$\left(\eta^{6}-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\left(\mathrm{Me}_{2} \mathrm{Hpz}\right)\right]$ was obtained by refluxing $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ with $\mathrm{Me}_{2} \mathrm{Hpz}$ in benzene [1]. In contrast, the binuclear pyrazolate-bridged cations [$\boldsymbol{\eta}^{6}$-arene) $\mathrm{Ru}(\mu-\mathrm{OH})(\mu-\mathrm{pz})_{2} \mathrm{Ru}\left(\eta^{6}\right.$-arene $\left.)\right]^{+}$(arene $=p$-cymene or hexamethylbenzene), which can be isolated as their BPh_{4} salts, may be prepared by the reaction of the tri- μ-hydroxo complexes $\left[\left\{\left(\eta^{6} \text {-arene }\right) \mathrm{Ru}\right\}_{2}(\mu-\mathrm{OH})_{3}\right] \mathrm{BPh}_{4}$ [2] with pyrazole in a $1: 3$ molar ratio in refluxing acetone [3]. An X-ray structural study of the p-cymene complex confirmed the bridging mode for the pyrazolate ligands, and established C_{2} crystallographic symmetry for the binuclear cations. Interestingly, addition of $\left[\left\{\left(\eta^{6} \text {-arene }\right) \mathrm{Ru}\right\}_{2}(\mu \text {-OMe })_{3}\right] \mathrm{BPh}_{4}$ (arene $=p$-cymene or hexamethylbenzene) [2] to pyrazole in the same molar ratio [1:3], followed by refluxing in methanol, led only to the substitution of one methoxo-bridge. The resulting binuclear complexes
$\left[\left(\eta^{6}\right.\right.$-arene $) \mathrm{Ru}(\mu \text {-OMe })_{2}(\mu-\mathrm{pz}) \mathrm{Ru}\left(\eta^{6}\right.$-arene $\left.)\right] \mathrm{BPh}_{4}$ were characterized by IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy [3].

In light of these findings we were interested in finding out whether analogous chloro-bridged complexes containing either one or two μ-pyrazolate ligands could be prepared. A second feature of interest was the question of how the maximum number of bridging N -donor ligands in such binuclear complexes is controlled by steric and/or electronic factors.

We therefore studied the reaction of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ with the following potentially bridging N -donor ligands: pyrazole (Hpz), 3 -methylpyrazole (3 MeHpz), 4-methylpyrazole (4 MeHpz) and 6-azauracil (6 auraH ${ }_{2}$).

Treatment of aqueous solutions of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ with an excess of NaOH followed by the addition of NaBPh_{4} yields $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mathrm{OH})(\mu-\mathrm{OH})_{2} \mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\eta^{6}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{BPh}_{4}$ as major and the tetranuclear complex $\left[\left\{\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}\right\}_{4}(\mathrm{OH})_{4}\left(\mu_{4}-\right.\right.$ O) $]\left[\mathrm{BPh}_{4}\right]_{2}$ as minor product $[2,4]$. We thus chose to study the reaction of $\left[\left(\eta^{6}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ with the above N -donor ligands in either $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}$ or $\mathrm{CH}_{3} \mathrm{OH}$ solution, in the expectation that these conditions might allow isolation of either hydroxo- or chloro-bridged species. In the case of 3-methylpyrazole we were interested in establishing whether the presence of a methyl substituent in the 3-position adjacent to the potentially bridging ring nitrogen atom N 2 would prevent the formation of binuclear complexes. In the case of the methylmercury(II) cation $[\mathrm{MeHg}]^{+}$we previously demonstrated that N 6 of $6 \mathrm{auraH}_{2}$ is a potential metal-binding site [5]. A bridging N1,N6 coordination mode would necessarily require the Ru atoms in a binuclear complex to be much closer than in an analogous pyrazolatebridged species, so that steric interactions, for example between benzene protons and O 2 of $6 \mathrm{auraH}_{2}$, might be expected to limit the number of bridging 6auraH ligands.

Experimental

IR spectra were recorded with $1 \% \mathrm{KBr}$ discs on a Perkin-Elmer 297 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AM 400 spectrometer at $20^{\circ} \mathrm{C}$; δ values are given in ppm. Elemental analyses were performed with a Perkin-Elmer 2400. [$\left.\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ was prepared as described previously [6] from RuCl_{3}. $\mathbf{3} \mathrm{H}_{2} \mathrm{O}$, which was a gift from Degussa AG. The pyrazole derivatives and 6-azauracil were purchased from Sigma Chemie GmbH and used as received.

Preparation of $\left[\left(\eta^{6}-C_{6} H_{6}\right) R u(\mu-C l)(\mu-B)_{2} R u\left(\eta^{6}-C_{6} H_{6}\right)\right] C l(B=p z \quad(1 a), B=4 M e p z$ (3a)) and [($\left.\left.\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}(3 \mathrm{MeHpz})\right]$ (5)

In a typical preparation a solution of $27 \mathrm{mg}(0.4 \mathrm{mmol})$ of pyrazole in 7 ml of methanol was added to a solution of $100 \mathrm{mg}(0.2 \mathrm{mmol})$ of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ in 25
ml of $\mathrm{H}_{2} \mathrm{O}$. The mixture was stirred for 12 h and then reduced in volume until precipitation commenced. After addition of 2 ml of methanol the solution was set aside at $4^{\circ} \mathrm{C}$ to yield red prismatic crystals of 1 a , which were filtered off and dried in vacuo (Yield $95 \mathrm{mg}, 85 \%$). 3a and 5 were prepared under analogous conditions (yields respectively 71 and 66\%). Reaction in methanol in the same molar ratio yielded the same products.
$1 \mathrm{a} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$: Found: C, 38.0; $\mathrm{H}, 3.2 ; \mathrm{N}, 9.9 ; M=572.4 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Ru}_{2} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ calcd.: C, 37.77; H, 3.35; N, 9.79\%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, \mathrm{Tms}-\mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{COONa}$): $\delta 5.96$ (s, 12H, $\mathrm{C}_{6} \mathrm{H}_{6}$); 6.35 (s, 2H, Hpz-H4); 8.17 (s, 4H, Hpz-H3/5).

3a: Found: C, 40.0; H, 3.7; N, 9.3; M 591.5. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Ru}_{2}$ calcd.: C, 40.61; $\mathrm{H}, 3.75 ; \mathrm{N}, 9.40 \%{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$, Tms- $\mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{COONa}$): $\delta 2.05(\mathrm{~s}, 6 \mathrm{H}, 4 \mathrm{Mepz-}$ CH_{3}) $; 5.92\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}\right) ; 8.00(\mathrm{~s}, 4 \mathrm{H}, 4 \mathrm{Mepz}-\mathrm{H} 3 / 5)$.

5: Found: $\mathrm{C}, 36.5 ; \mathrm{H}, 3.78 ; \mathrm{N}, 8.4 ; M=332.2 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{Ru}$ calcd.: $\mathrm{C}, 36.16$; $\mathrm{H}, 3.64 ; \mathrm{N}, 8.43 \%{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$, Tms- $\mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{COONa}$): $\delta 2.33$ (s, 3H, 3Mepz$\left.\mathrm{CH}_{3}\right) ; 5.98\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}\right) ; 6.32(1 \mathrm{~s}, 1 \mathrm{H}, 3 \mathrm{Mepz}-\mathrm{H} 4) ; 7.83(\mathrm{~s}, 1 \mathrm{H}, 3 \mathrm{Mepz}-\mathrm{H} 5)$.

Preparation of $\left[\left(\eta^{6}-C_{6} H_{6}\right) R u(\mu-C l)_{2}(\mu-B) R u\left(\eta^{6}-C_{6} H_{6}\right)\right] C l \quad(B=p z \quad(2 a), \quad B=4 M e p z$ (4a))

In a typical preparation $14 \mathrm{mg}(0.2 \mathrm{mmol})$ of pyrazole in 7 ml of methanol was added to a solution of $100 \mathrm{mg}(0.2 \mathrm{mmol})$ of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ in 25 ml of $\mathrm{H}_{2} \mathrm{O}$. After 12 h stirring the volume was reduced until precipitation commenced. After addition of 2 ml of methanol the solution was set aside at $4^{\circ} \mathrm{C}$ to yield red crystals of 2 a which were filtered off and dried in vacuo (yield $72 \mathrm{mg}, 67 \%$). 4 a was prepared under analogous conditions (yield 58\%). Reaction in methanol in the same molar ratio yields the same products.
$2 \mathrm{a} \cdot \mathrm{H}_{2} \mathrm{O}$: Found: C, $33.0 ; \mathrm{H}, 3.0 ; \mathrm{N}, 5.1 ; ~ M=549.8 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{Cl}_{3} \mathrm{Ru}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ calcd.: C, 32.77; H, 3.12; N, 5.10\%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, \mathrm{Tms}-\mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{COONa}$): $\delta 5.96$ ($\mathrm{s}, 12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}$) ; 6.29 (s, 1H, Hpz-H4); 8.07 (s, $4 \mathrm{H}, \mathrm{Hpz-H3/5)}$.
$4 \mathrm{a} \cdot \mathrm{H}_{2} \mathrm{O}$: Found: $\mathrm{C}, 34.0 ; \mathrm{H}, 3.4 ; \mathrm{N}, 5.4 . \quad M=563.8 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{Cl}_{3} \mathrm{Ru}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ calcd.: C, 34.08; $\mathrm{H}, 3.40$; N, $4.97 \%{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{Tms}-\mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{COONa}\right): \delta 2.02$ (s, $3 \mathrm{H}, 4 \mathrm{Mepz}-\mathrm{CH}_{3}$); $5.73\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}\right) ; 7.85(\mathrm{~s}, 2 \mathrm{H}, 4 \mathrm{Mepz}-\mathrm{H} 3 / 5)$.
Preparation of $\left[\left(\eta^{\sigma}-C_{6} H_{6}\right) R u(\mu-O H)(\mu-p z)_{2} R u\left(\eta^{6}-C_{6} H_{6}\right)\right] C l(1 b)$ and $\left[\left(\eta^{6}-C_{6} H_{6}\right) R u(\mu-\right.$ $\left.\mathrm{OH})_{2}(\mu-\mathrm{pz}) \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}(2 c)$

A solution of $27 \mathrm{mg}(0.4 \mathrm{mmol})$ of pyrazole in 7 ml of methanol was added to a solution of $100 \mathrm{mg}(0.2 \mathrm{mmol})$ of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ in 25 ml of $\mathrm{H}_{2} \mathrm{O}$. The mixture was refluxed for 30 min with stirring and then reduced in volume until precipitation commenced. After addition of 2 ml methanol the solution was set aside at $4^{\circ} \mathrm{C}$ to yield orange crystals of $\mathbf{1 b}$, which were filtered off and dried in vacuo (yield 75 mg , 68%). 2c may be prepared under analogous conditions using $14 \mathrm{mg}(0.2 \mathrm{mmol})$ of pyrazole and refluxing for 3 h (yield $77 \mathrm{mg}, 72 \%$). Alternatively $\mathbf{1 b}$ and $\mathbf{2 c}$ may be synthesised from the chloro-bridged complexes 1 la and 2 a by refluxing these for 3 h in $\mathrm{H}_{2} \mathrm{O}$.

1b $\cdot \mathrm{H}_{2} \mathrm{O}$: Found: C, 38.4; $\mathrm{H}, 3.7 ; \mathrm{N}, 9.9 ; M=563.0 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{OClRu}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ calcd.: C, $38.40 ; \mathrm{H}, 3.76 ; \mathrm{N}, 9.95 \%$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, \mathrm{Tms}-\mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{COONa}$): $\delta 5.76$ (s, 12H, $\mathrm{C}_{6} \mathrm{H}_{6}$); 6.29 (s, 2H, Hpz-H4); 8.08 (s, 4H, Hpz-H3/5).
$\mathbf{2 c} \cdot 3 \mathrm{H}_{2} \mathrm{O}$: Found: C, 32.4; H, 3.9; N, 5.1; $M=549.0 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Ru} \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ calcd.: $\mathrm{C}, 32.82 ; \mathrm{H}, 4.22 ; \mathrm{N}, 5.10 \%$. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{Tms}-\mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{COONa}\right): \delta 5.58$ (s, 12H, $\mathrm{C}_{6} \mathrm{H}_{6}$) ; 6.52 (s, 1H, Hpz-H4); 8.34 (s, 2H, Hpz-H3/5).

Preparation of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{OH})_{2}(\mu-6 \mathrm{auraH}) \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}(6)$ and $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right.$ $\mathrm{RuCl}_{2}\left(\right.$ GauraH $\left.\left._{2}\right)\right]$ (7)

A solution of $90 \mathrm{mg}(0.8 \mathrm{mmol})$ of 6 -azauracil $\left(6 \mathrm{auraH}_{2}\right)$ in 10 ml methanol was added to a solution of $200 \mathrm{mg}(0.4 \mathrm{mmol})$ of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ in 20 ml of $\mathrm{H}_{2} \mathrm{O}$. The mixture was stirred for 12 h , then reduced in volume to 5 ml and set aside at $4^{\circ} \mathrm{C}$ to yield red prismatic crystals of 6 which were filtered off and dried in vacuo (yield $266 \mathrm{mg}, 62 \%$). 7 was prepared under similar conditions ($2: 1$ molar ratio) but in the absence of $\mathrm{H}_{2} \mathrm{O}$. Reaction in methanol alone in the presence of NaOMe also yielded 7.

6: Found: $\mathrm{C}, 32.9 ; \mathrm{H}, 2.7 ; \mathrm{N}, 7.6 ; ~ M=539.9 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{ClRu}_{2}$ calcd.: C , 33.37; H, 2.99; N, 7.78\%. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{Tms}-\mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{COONa}\right): \delta 5.70(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{6}$); 5.73 (s, $6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}$); $7.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}) ; 8.78$ (s, N3-H).

7: Found: C, 29.5; H, 2.5; N, 11.5; $M=363.2 . \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Ru}$ calcd.: C, 29.76; $\mathrm{H}, 2.49 ; \mathrm{N}, 11.57 \%{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, \mathrm{Tms}-\mathrm{CD}_{2} \mathrm{CD}_{2} \mathrm{COONa}$): $\delta 6.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}\right.$); 7.51 (s, 1H, C5-H).

X-Ray structural analyses of 1a, 2a, 5 and 6

Suitable crystals for X-ray structural analyses were obtained from $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}^{+}$ solutions. Crystal and refinement data are summarized in Table 1. Unit cell constants were obtained from a least-squares fit to the settings of 25 reflections centered on an Enraf-Nonius CAD4 diffractometer. Intensity data were collected on the diffractometer at varied scan rates using Mo- K_{α} radiation. Three selected reflections were monitored at regular intervals during data collection; no significant decreases in intensity were observed. Empirical absorption corrections were performed for all data sets.

The structures were solved by Patterson and difference syntheses and refined by full-matrix least-squares. The asymmetric unit of $2 a$ contains disordered water and

Table 1
Crystal and refinement data

	1a	2a	5	6
Space group	$P 2_{1} / n$	C2/c	$P 21_{1 / c}$	$P 2_{1} / n$
$a(\AA)$	11.640(3)	20.564(2)	6.378(1)	6.871(2)
b (A$)$	12.086(2)	8.771(1)	19.354(1)	15.517(1)
$c(\AA)$	12.877(3)	20.500(3)	10.038(1)	19.253(3)
$\beta\left({ }^{\circ}\right)$	91.70(5)	108.61(1)	107.53(4)	93.71(2)
$V\left(\AA^{3}\right)$	1811(1)	3504(1)	1182(3)	2048(1)
Z	4	8	4	4
$D_{c}\left(\mathrm{~g} \cdot \mathrm{~cm}^{-3}\right)$	2.00	2.11	1.87	1.98
Radiation	Mo- K_{α}	Mo-K ${ }_{\alpha}$	$\mathrm{Mo}^{1} \mathrm{~K}_{a}$	$\mathrm{Mo}^{\text {K }}$ a
$\mu\left(\mathrm{cm}^{-1}\right)$	18.0	21.6	17.3	16.3
Scan type	ω	ω	ω	ω
$2 \theta_{\text {max }}\left({ }^{\circ}\right.$)	50	50	50	50
Reflections measured	2978	3062	2008	3572
Reflections observed	2430	2273	1633	3141
Rejection criterion	$F_{\mathrm{o}}{ }^{2}<2 \sigma\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)$	$F_{\mathrm{o}}^{2}<2 \mathrm{o}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)$	$F_{\mathrm{o}}^{2}<20\left(F_{\mathrm{o}}{ }^{2}\right)$	$F_{0}^{2}<20\left(F_{o}{ }^{2}\right)$
R	0.033	0.031	0.034	0.022
R_{w}	0.032	0.031	0.034	0.023
p	0.014	0.014	0.014	0.014

Table 2
Atom position parameters with equivalent isotropic temperature factors $\left(\AA^{2} \cdot 10^{3}\right)$

Atom	\boldsymbol{x}	y	z	$U_{\text {eq }}$
1a				
Ru1	0.1621(1)	0.1751(1)	0.0315(1)	24(1)
Ru2	0.3186(1)	0.0018(1)	-0.1483(1)	23(1)
Cl 1	0.2191(2)	0.5936(2)	0.0480(2)	59(1)
Cl 2	0.2421(1)	-0.0071(1)	0.0225(1)	32(1)
N11	0.1652(4)	0.0827(4)	-0.1888(4)	26(3)
N12	0.1048(4)	0.1439(4)	-0.1199(4)	27(3)
N21	0.3134(4)	0.2251(4)	-0.0391(3)	25(3)
N22	$0.3720(4)$	0.1599(4)	-0.1039(3)	26(3)
C41	0.2826(6)	-0.1475(6)	-0.2411(6)	48(4)
C42	0.3324(8)	-0.1773(6)	-0.1464(6)	59(5)
C43	0.4408(8)	-0.1314(7)	-0.1152(6)	62(5)
C44	0.4916(6)	-0.0555(7)	-0.1763(8)	59(5)
C45	0.4396 (7)	-0.0242(6)	-0.2715(6)	54(5)
C46	0.3369(7)	-0.0688(6)	-0.3022(5)	46(4)
C13	0.0073(5)	$0.1767(5)$	-0.1694(5)	34(3)
C14	0.0034(5)	0.1362(5)	-0.2685(5)	37(4)
C15	0.1046(5)	$0.0790(5)$	-0.2786(4)	30(3)
C31	0.0493(9)	0.3108(8)	0.0665(6)	69(6)
C32	-0.0110(6)	0.2133(9)	0.0782(6)	63(6)
C33	0.0311(8)	0.1310(7)	0.1405(7)	62(5)
C34	0.1347(8)	$0.1427(8)$	0.1942(5)	60(5)
C35	0.1947(6)	$0.2413(10)$	0.1873(6)	64(6)
C36	0.1532(10)	$0.3237(7)$	0.1233(9)	77(7)
C23	0.4663(5)	0.2160(5)	-0.1323(5)	31(3)
C24	0.4693(5)	0.3175(5)	-0.0847(5)	33(3)
C25	0.3717(5)	0.3219(5)	-0.0271(4)	27(3)
2a				
Rul	0.1638(1)	0.0160(1)	0.4351(1)	29(1)
Ru2	0.1334(1)	0.0138(1)	0.5913(1)	32(1)
Cl1	0.2346(1)	0.0247(2)	0.5546(1)	36(1)
Cl 2	0.0924(1)	-0.1323(2)	0.4858(1)	41(1)
Cl 3	0.1276(1)	0.5038(2)	0.7537(1)	69(1)
N1	0.1169(2)	0.2004(5)	0.4645(2)	33(2)
N2	0.1044(2)	0.1986(5)	0.5259(2)	34(2)
O200	0.5000	0.2137(7)	0.7500	65(4)
0100	0.5000	$0.1898(12)$	0.2500	187(11)
C100	0.4836(11)	$0.1226(21)$	0.1642(9)	98(12)
C5	0.0963(3)	$0.3356(6)$	0.4347(3)	41(3)
C4	0.0705(3)	0.4235(7)	0.4763(3)	49(3)
C3	0.0764(3)	0.3318(6)	0.5331(3)	43(3)
C 11	0.1872(3)	0.1387(3)	0.3550 (2)	52(4)
C12	0.1258(3)	0.0596(3)	0.3265(2)	47(3)
C13	0.1232(3)	-0.0971(3)	0.3370 (2)	51(4)
C14	0.1819(3)	-0.1748(3)	0.3759(2)	52(4)
C15	0.2433(3)	-0.0957(3)	0.4044(2)	55(4)
C16	0.2460(3)	0.0610(3)	0.3939(2)	61(4)
C21	0.1362(3)	$0.1338(4)$	0.6832(2)	$56(4)$
C22	0.0701(3)	$0.0766(4)$	0.6525(2)	63(4)
C23	0.0605(3)	-0.0784(4)	0.6372(2)	70(5)
C24	0.1169(3)	-0.1761(4)	0.6525(2)	74(5)
C25	0.1829(3)	-0.1189(4)	0.6831(2)	68(5)
C26	0.1926(3)	0.0361(4)	0.6985(2)	56(4)

Table 2 (continued)

Atom	\boldsymbol{x}	y	z	$U_{\text {eq }}$
5				
Rul	$0.0164(1)$	0.3519(1)	0.8240(1)	29(1)
Cl 1	-0.2386(2)	0.4471(1)	0.7983(2)	44(1)
Cl2	-0.2925(3)	0.2819(1)	0.6931(2)	49(1)
N1	0.0368(7)	0.3833(2)	0.6278(4)	35(2)
N2	-0.1493(8)	$0.3874(3)$	0.5167(5)	42(3)
C3	-0.1015(11)	0.4135(3)	0.4025(6)	46(3)
C4	0.1157(11)	0.4255(3)	0.4421(6)	47(3)
C5	$0.1980(10)$	0.4063(3)	0.5813(6)	42(3)
C31	-0.2817(12)	0.4227(4)	$0.2670(7)$	71(4)
C11	$0.3120(10)$	$0.3938(3)$	0.9684(10)	83(5)
C12	$0.1537(10)$	$0.3856(5)$	1.0374(7)	81(5)
C13	0.0520(10)	0.3217(3)	$1.0360(7)$	76(5)
C14	0.1084(10)	0.2660(3)	0.9656(7)	95(6)
C15	0.2667(10)	0.2742(3)	0.8965(7)	93(6)
C16	$0.3685(10)$	0.3381(3)	0.8979(7)	92(6)
6				
Ru1	0.0602(1)	0.7133(1)	0.8213(1)	21(1)
Ru2	0.2062(1)	0.7566(1)	0.9779(1)	25(1)
Cl	0.4362(2)	0.9279(1)	0.8209(1)	60(1)
Ow1	0.6401(4)	0.6489(2)	0.9208(1)	38(1)
O 2	0.2991(4)	0.5712(2)	1.0579(1)	51(2)
Ow2	0.5885(5)	0.5185(2)	0.8191(2)	66(2)
Ow3	0.0337(5)	1.0217(2)	0.8223(2)	68(2)
O4	0.1769(4)	0.3771(1)	0.8863(1)	46(1)
Ow4	0.6813(4)	0.4209(2)	0.5917(1)	50(2)
O11	-0.0476(3)	0.7558(1)	0.9131(1)	25(1)
O12	0.3093(3)	0.7526(1)	0.8786(1)	26(1)
N1	$0.1851(4)$	0.6234(2)	0.9533(1)	24(1)
N3	0.2352(4)	0.4751(2)	0.9727(1)	29(1)
N6	0.1244(4)	0.6038(2)	0.8861(1)	23(1)
C2	0.2419(5)	0.5574(2)	0.9977(2)	28(2)
C4	0.1773(5)	0.4514(2)	0.9067(2)	32(2)
C5	0.1173(5)	0.5249(2)	0.8639(2)	$30(2)$
C11	0.0991(7)	0.6589(3)	0.7190(2)	55(3)
C12	0.1711(6)	0.7416(3)	0.7218(2)	53(3)
C13	0.0505(7)	0.8104(3)	0.7405(2)	51(2)
C14	-0.1375(7)	0.7929(3)	0.7576(2)	55(3)
C15	-0.2084(6)	0.7078(3)	0.7558(2)	55(3)
C16	-0.0899(8)	0.6426(3)	0.7361(2)	57(3)
C21	0.3199(8)	0.8830(3)	1.0071(2)	61(3)
C 22	0.1353(7)	0.8762(3)	1.0287(2)	56(3)
C23	0.0826(6)	0.8066(3)	1.0707(2)	50(2)
C24	0.2200(6)	0.7442(2)	1.0904(2)	44(2)
C25	0.4105(6)	0.7498(3)	1.0687(2)	47(2)
C26	0.4605(6)	0.8188(3)	1.0263(2)	52(2)

methanol molecules with site occupancy factors of 0.5 . Four water molecules of crystallisation are present in the asymmetric unit of 6 . Anisotropic temperature factors were used for ais non-nybrogen aroms in each of the complexes. Hydrogen atom positions in la and 6 were refined in the final cycles. Those for $2 a$ were
included at calculated sites. Only the 3-methylpyrazolate protons could be included in the refinement for 5 . The hydrogen atoms in 1 la and 2 a were assigned group isotropic temperature factors. Terminal reliability indices are listed in Table 1, where $R_{w}=\left[\Sigma w\left(F_{o}-F_{\mathrm{c}}\right)^{2} / \Sigma w F_{\mathrm{o}}^{2}\right]^{1 / 2}$ with weights given by $w=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+p^{2} F_{\mathrm{o}}^{2}\right]^{-1}$. Final difference syntheses were effectively contourless. Analytical scattering factors,

Table 3
Selected bond lengths (\AA) and angles (${ }^{\circ}$)

1a			
Ru1-C12	2.395(2)	Ru2-Cl2	$2.400(1)$
Ru1-N12	2.077(4)	Ru2-N22	2.087(5)
Ru1-N21	2.095(4)	Ru2-N11	2.088(5)
N11-N12	1.366(6)	N21-N22	1.354(6)
N12-Ru1-Cl12	84.4(1)	N22-Ru2-Cl2	84.7(1)
N21-Ru1-Cl2	84.9(1)	N11-Ru2-Cl2	85.0(1)
N21-Ru1-N12	84.0(2)	N11-Ru2-N22	83.7(1)
Ru1-N12-N11	123.4(3)	Ru2-N22-N21	123.0(3)
Ru1-N21-N22	123.5(3)	Ru2-in11-N12	123.0(3)
Ru1-C12-Ru2	99.1(1)		
2a			
Rul-Cl1	2.418(1)	Ru2-Cl1	2.429(1)
Rul-Cl2	2.429(1)	Ru2-Cl2	2.422(1)
Ru1-N1	2.069(4)	Ru2-N2	2.066(4)
N1-N2	1.363(6)		
Cl1-Ru1-Cl2	80.5(1)	Cl1-Ru2-Cl2	80.4(1)
Cl1-Ru1-N1	82.3(1)	C11-Ru2-N2	82.4(1)
Cl2-Ru1-N1	83.8(1)	Cl2-Ru2-N2	83.6(1)
Ru1-N1-N2	120.2(3)	Ru2-N2-N1	120.5(3)
Ru1-Cl1-Ru2	90.8(1)	$\mathrm{Ru} 1-\mathrm{Cl} 2-\mathrm{Ru} 2$	90.7(1)
5			
Ru1-Cl1	$2.420(1)$	Ru1-Cl2	2.426(1)
Rul-N1	2.102(4)		
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{Cl} 2$	87.6(1)	Cl1-Ru1-N1	84.8(1)
Cl2-Ru1-N1	85.6(1)		
6			
Ru1-O11	2.067(2)	Ru2-O11	2.078(2)
Ru1-012	2.068(2)	Ru2-O12	2.082(2)
Rul-N6	$2.136(3)$	Ru2-N1	2.124(3)
N1-C2	1.374(4)	C2-N3	$1.365(4)$
N3-C4	1.358(4)	C4-C5	1.450(5)
C5-N6	1.297(4)	N6-N1	$1.368(3)$
C2-O2	$1.218(4)$	C4-O4	1.218(4)
N6-Ru1-O11	80.0(1)	N1-Ru2-O11	79.5(1)
N6-Ru1-O12	77.9(1)	N1-Ru2-O12	77.8(1)
O11-Ru1-012	77.3(1)	O11-Ru2-012	76.7(1)
Ru1-O11-Ru2	100.5(1)	Ru1-O12-Ru2	100.4(1)
Ru1-N6-N1	114.5(2)	Ru2-N1-N6	116.1(2)
Ru1-N6-C5	123.9(3)	Ru2-N1-C2	125.0(2)
C2-N1-N6	118.7(3)	N1-N6-C5	121.6(3)

corrected for the real and imaginary parts of anomalous dispersion were taken from ref. [7]. Calculations were performed with SHELX-76 [8] and with local programs. Atomic coordinates are listed in Table 2 and selected bond lengths and angles in Table 3. Tables of hydrogen atom coordinates, a complete list of bond lengths and angles, and lists of structure factors are available from the authors.

Discussion

$\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ reacts with either pyrazole or 4-methylpyrazole in a $1: 2$ molar ratio in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}$ solution or in $\mathrm{CH}_{3} \mathrm{OH}$ alone at room temperature to yield the novel chloro-bridged binuclear complexes [$\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{Cl})(\mu-\mathrm{B})_{2} \mathrm{Ru}$ -$\left.\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}(1 \mathrm{a}, \mathrm{B}=\mathrm{pz} ; 3 \mathrm{a}, \mathrm{B}=4 \mathrm{Mepz})$, the structure of 1 a being established by an X-ray structural analysis (Fig. 1). If the reagents are allowed to react in a 1:1 molar ratio under similar conditions then the complexes $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{Cl})_{2}(\mu-\right.$ B) $\left.\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}(2 \mathrm{a}, \mathrm{B}=\mathrm{pz} ; 4, \mathrm{~B}=4 \mathrm{Mepz})$ can be isolated. The presence of two chloro-bridges was confirmed by X -ray analysis for 2 a (Fig. 2). As reported by McCleverty et al., use of a $4: 1$ ratio of pyrazole to $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ leads to bridge cleavage, and to formation of the monomeric complex [$\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}$ $\left.(\mathrm{Hpz})_{2}\right]\left[\mathrm{PF}_{6}\right]$ in the presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}[1]$.

It is instructive to compare the dimensions of cations $\mathbf{1 a}$ and 2 a . The $\mathrm{Ru}-\mathrm{Cl}$ distances are significantly longer in the latter species; the average values are 2.397 for 1 a and $2.424 \AA$ for 2 a . Along with this lengthening of the $\mathrm{Ru}-\mathrm{Cl}$ bonds there is a shortening of the $\mathrm{Ru}-\mathrm{N}(\mathrm{pz})$ bonds on going from 1a to 2 a ; average values are 2.087 for 1 a and $2.067 \AA$ for 2 a . The weakening of the $\mathrm{Ru}-\mathrm{Cl}$ bonds in 2 a is accompanied by a marked change in the bridging $\mathrm{Ru}-\mathrm{Cl}-\mathrm{Ru}$ angles in this cation in comparison to 1 a . These narrow from 99.1 in la to an average value of 90.8° in 2 a . At the same time the $\mathrm{Ru}-\mathrm{N}-\mathrm{N}$ angles to the bridging pyrazolato ligands fall from an average

Fig. 1. Structure of the cation $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{Cl})(\mu-\mathrm{pz})_{2}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+}(1 \mathrm{a})$.

Fig. 2. Structure of the cation $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{Cl})_{2}(\mu-\mathrm{pz})\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+}(2 \mathrm{a})$.
value of 123.2 in 1 a to 120.4° in 2 a . As a result of these geometrical changes the Ru1 \cdots Ru2 distance shortens from 3.649 in 1a to $3.452 \AA$ in 2a.

Whereas the $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{Cl})_{3} \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+}$cation is known to undergo facile bridge cleavage reactions with a variety of Lewis bases to yield monomeric complexes of the type $\left.\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuClL}\right]_{2}\right]^{+}$and $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2} \mathrm{~L}\right]\left(\mathrm{L}=\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right.$, $\mathrm{Et}_{2} \mathrm{~S}, \mathrm{PR}_{3}$, etc.) $[9,10],\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{OH})_{3} \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+}$does not react with an excess of $\mathrm{PR}_{3}\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PEt}_{2} \mathrm{Ph}\right)$ in acetone even upon prolonged reflux [2]. It was therefore of interest to establish how readily substitution of the chloro-bridges in 1a/3a and 2a/4a by hydroxyl ions took place.

The temperature dependence of $\mathrm{Cl}^{-} / \mathrm{OH}^{-}$exchange was studied by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{D}_{2} \mathrm{O}$ solution. At temperatures below 321 K , for freshly prepared solutions only proton resonances for la are observed. At higher temperatures the concentration of $\mathbf{1 b}$ increases steadily, complete substitution of chloro-bridges by

$$
\begin{gather*}
{\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{Cl})(\mu-\mathrm{pz})_{2} \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+} \xrightarrow[(1 \mathrm{a})]{+\mathrm{OH}^{-}}} \tag{1a}\\
{\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{OH})(\mu-\mathrm{pz})_{2} \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+}} \tag{1b}
\end{gather*}
$$

hydroxo-bridges is rapid at 346 K . The process is not reversible. After an NMR sample containing only $\mathbf{1 b}$ has been cooled from 346 K to room temperature only proton resonances for this complex can be seen. A similar phenomenon is observed in the case of 3 a , leading to the rapid formation of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{OH})(\mu\right.$ $\left.4 \mathrm{Mepz})_{2} \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+}$(3b) at higher temperatures: ${ }^{1} \mathrm{H}$ NMR (346 K): $\delta 2.03$ (s, $6 \mathrm{H}, 4 \mathrm{Mepz}-\mathrm{CH}_{3}$); 5.72 (s, 12H, $\mathrm{C}_{6} \mathrm{H}_{6}$); 7.90 (s, $4 \mathrm{H}, 4 \mathrm{Mepz}-\mathrm{H} 3 / 5$). 1b may be prepared directly from $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ and pyrazole (molar ratio $1: 2$) in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}$ solution by refluxing for 30 min . It can be assumed that an analogous synthesis of $\mathbf{3 b}$ would be possible.

The stepwise substitution of the chloro-bridges in $2 a$ and $4 a$ can be monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Upon warming of a sample of 2 a to 301 K a marked
concentration of $\mathbf{2 b}$ [${ }^{1} \mathrm{H}$ NMR (301 K): $\delta 5.76\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}\right.$); $6.49(\mathrm{~s}, 1 \mathrm{H}$, Hpz-H4); 8.29 (s, 2H, Hpz-H3/5)] is also observed. At temperatures above 306 K

$$
\begin{gather*}
{\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{Cl})_{2}(\mu-\mathrm{pz}) \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+}} \tag{2a}\\
-\mathrm{Cl}^{-} \downarrow+\mathrm{OH}^{-} \\
{\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{Cl})(\mu-\mathrm{OH})(\mu-\mathrm{pz}) \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+}} \tag{2b}\\
-\mathrm{Cl}^{-} \downarrow+\mathrm{OH}^{-} \\
{\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{OH})_{2}(\mu-\mathrm{pz}) \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+}} \tag{2c}
\end{gather*}
$$

the concentration of $\mathbf{2 c}$, with two hydroxo-bridges, increases rapidly [$\mathbf{2 c}$: ${ }^{1} \mathrm{H}$ NMR (306 K): $\delta 5.58$ (s, 12H, $\mathrm{C}_{6} \mathrm{H}_{6}$); 6.52 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Hpz}-\mathrm{H} 4$); 8.34 (s, 2H, Hpz-H3/5)]. Complete replacement of the chloro-bridges by hydroxo-bridges is rapid at 346 K . As in the case of 1 la this process is not reversible. When an NMR sample of $\mathbf{2 c}$ is cooled from 346 K to room temperature only proton resonances for this complex are observed. 2 c was prepared by direct reaction of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ and pyrazole (molar ratio $1: 1$) in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}$ solution by refluxing for 3 h .

These observations confirm that substitution of chloro-bridges in binuclear (η^{6}-arene)ruthenium(II) complexes by pyrazolate or hydroxyl ions occurs readily. For steric reasons the maximum number of pyrazolato-bridges is limited to two, as in $1 \mathbf{1 a}$ and $\mathbf{1 b}$. As mentioned previously the $\mathrm{Ru}-\mathrm{N}-\mathrm{N}$ bridges angles increase on average from 120.4 in $\mathbf{2 a}$ to 123.2° in 1a. Replacement of the last chloro-bridge in 1a by a bridging pyrazolato ligand would lead to a further increase in these angles and is thus energetically unfavourable. Reaction of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ with pyrazole in a molar ratio of $1: 4$ gives the mononuclear cation $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}(\mathrm{Hpz})_{2}\right]^{+}$ [1].

Inspection of Figs. 1 and 2 suggests that a methyl substituent in the pyrazole 3-position adjacent to a bridging nitrogen atom N 2 would come close to a benzene ligand. In order to establish whether bridging is still possible under these geometrical conditions we performed the reaction of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ with 3-methylpyrazole in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}$ solution. For both $1: 1$ and $1: 2$ molar ratios only the monomeric product $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}(3 \mathrm{MepzH})\right]$ (5) could be isolated. The molecular structure of 5 is depicted in Fig. 3. The terminal $\mathrm{Ru}-\mathrm{Cl}$ distances in 5 (average $2.423 \AA$) are similar to those for the bridging chlorine atoms in $2 a$ (average value $2.424 \AA$). It may be assumed that formation of the alternative configurational isomer of $5,\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}(5 \mathrm{MepzH})\right]$ (5), with the methyl substituent in the pyrazole 5-position adjacent to the Ru1-N1 bond, is unfavourable for steric reasons (see Fig. 3).

As a result of the geometrical requirements of a six-membered heteroaromatic ring system, an N1,N6-bridging coordination mode for 6 -azauracil ($6 \mathrm{auraH}_{2}$) would necessarily require the Ru atoms in a binuclear complex to be much closer than in an analogous pyrazolate-bridged species. Reaction of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2}$ with 6 azauracil (molar ratio 1:2) in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}$ solution gives the binuclear complex $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{OH})_{2}(\mu-6 \mathrm{auraH}) \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}$ (6). Reaction in methanol solution alone yields the mononuclear species $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\left(6 \mathrm{auraH} \mathrm{H}_{2}\right)\right]$ (7). The structure of cation 6 is depicted in Fig. 4. The $\mathrm{Ru}-\mathrm{N}-\mathrm{N}$ angles to the bridging 6 -azauracilato ligand are respectively $116.1(2)$ and $114.5(2)^{\circ}$. The average of those

Fig. 3. Structure of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}(3 \mathrm{MepzH})\right]$ (5).
bridging angles is 5.1°, smaller than in 2 a , which contains one bridging pyrazolato ligand. As a result the Ru1 \cdots Ru2 distance shortens from $3.451 \AA$ in 2 a to $3.187 \AA$ in 6. The distances between Ru and the bridging hydroxyl ligands (2.067-2.082 \AA) are on average $0.346 \AA$ shorter than the $\mathrm{Ru}-\mathrm{Cl}$ distances in 2 a . The hypothetical binuclear cation $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{Cl})_{2}(\mu-6 \mathrm{aura}) \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+}$, which would require markedly wider $\mathrm{Ru}-\mathrm{N}-\mathrm{N}$ bridging angles and close steric contacts between O 2 and the neighbouring benzene protons, is energetically unfavourable compared to 6. For similar reason a binuclear cation containing two bridging 6 -azauracilato ligands cannot be prepared.

Fig. 4. Structure of the cation $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{OH})_{2}(\mu-6 \mathrm{auraH}) \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}(6)$.

Acknowledgements

We are grateful to the Fonds der Chemischen Industrie, Frankfurt for support of this work and to Degussa AG, Hanau for a gift of $\mathrm{RuCl}_{3} \cdot \mathbf{3} \mathbf{H}_{2} \mathbf{O}$.

References

1 C.J. Jones, J.A. McCleverty and A.S. Rothin, J. Chem. Soc., Dalton Trans., (1986) 109.
2 T. Arthur, D.R. Robertson, D.A. Tocher and T.A. Stephenson, J. Organomet. Chem., 208 (1981) 389.
3 I.A. Oro, M.P. Garcia, D. Carmona, C. Foces-Foces and F.H. Cano, Inorg. Chim. Acta, 96 (1985) L21.
4 R.O. Gould, T.A. Stephenson and D.A. Tocher, J. Organomet. Chem., 264 (1981) 365.
5 W.S. Sheldrick and S. Heeb, Z. Naturforsch. B, 42 (1987) 1556.
6 R.A. Zelonka and M.C. Baird, Can. J. Chem., 50 (1972) 3063.
7 International Tables for X-ray Crystallography, Vol. 4, The Kynoch Press, Birmingham, England, 1974, pp. 99, 149.
8 G.M. Sheldrick, shelx-76, a computer program for crystal structure determination, University of Cambridge, 1976.
9 T. Arthur and T.A. Stephenson, J. Organomet. Chem., 168 (1979) C39.
10 T. Arthur and T.A. Stephenson, J. Organomet. Chem., 208 (1981) 369.

